

1

Alexander V. Barabanov, Maxim I. Grishin, Alexey S. Markov. The Formal Metabasis For
Conformity Assessment of Information Security Software and Hardware // Izvestiya Instituta Inzhenernoy

Phiziki. 2011. № 3. P 82-88. ISSN 2073-8110. (In Russia)

UDC 681.3.06

Alexander Barabanov, Maxim Grishin, Alexey Markov

The Formal Metabasis For Conformity Assessment of Information

Security Software and Hardware

Abstract: An approach to the development of security test procedures for information security controls

is presented. The recommendations for optimizing the test procedure are obtained.
Keywords: information security, information protection, information security tools, certification, conformity

assessment, security testing.

Introduction

The mandatory evaluation of the information security software and hardware (ISSH)

used for informatization objects is performed as ISSH certification testing. The conformity

evaluation is also performed at the stages of acceptance testing, informatization objects

validation, and information security efficiency control. ISSH requirements are defined in the

regulatory and procedural guidelines for regulators, but those, however, either lack the

descriptions of testing methods or provide them in a qualitative description manner, and this

hinders automation and optimization of ISSH conformity evaluation. This presentation

discusses formalization of both general and particular methods of ISSH conformity evaluation

so as to enable one to define time, cost, and exhaustiveness factors of ISSH testing.

1. Formal Metabasis of Conformity Evaluation

An ISSH set is a set of hardware and software data processing components acting

either independently or as parts of other systems designed for either prevention or setting a

considerable obstacle to unauthorized access to information [1]. ISSH includes a number of

security subsystems, such as identification, authentication, access isolation, integrity control,

logging, and other mechanisms designed to fight actual information security threats.

Let us discuss an ISSH test. Let us grant that { }iR r is a subset of requirements for

ISSH  while { }iT t is a set of processes used to test the conformity to the requirements.

The test process designing method will be described as the following transformation:

:M R T  . Function M , on the basis of requirement ir R and information on the

2

implementation of ISSH  under test, generates test process it T performed for testing the

ISSH compliance with requirement ir R . As a rule, function M for ISSH  under test is a

bijection.

Any test process it T is characterized by the following: the purpose, the workflow,

the results to be registered, and the criteria of the positive decision.

The purpose contains the description of the intention to test ISSH conformity to the

requirements. The workflow defines the set of instructions to be performed by the tester to

initialize the ISSH under test and generate the input sequence to the ISSH. The results of test

processes are registered with different software testing means, such as network traffic

generation and interception tools, bulk memory search applications, and access isolation

testing applications. The criteria of the positive decision must contain the test processes model

results. The test is to compare the model and actual test results in order to enable a decision of

the ISSH conformity or non-conformity.

Let us introduce operators of meeting the requirements RF and correctness of test

results CF for the given , ,i ir t .

Operator of meeting requirement ir for ISSH  : {0,1}:RF R 



 


no. if 0,

,for holds t requiremen if ,1
),(

i
iR

r
rF

Operator of correctness of test process it for ISSH  : {0,1}:CF T 



 


no. if 0,

,for passedly successful test if ,1
),(

i
iC

t
tF

Operator CF indicates successful or unsuccessful test results for ISSH  , that is,

whether the actual test results are equivalent to the model results indicated in the process

description.

Set of five objects { , , , , }R CR M F F   will be the ISSH test method, where R is a

set of requirements for ISSH  , M is a test process designing method, and RF and CF are

operators of meeting the requirements and correctness of test processes respectively, and for

ir R  (,) (, (,))R i C iF r F M r    holds.

The method presupposes three stages: planning, testing, and result analysis. At the

planning stage, the specifications and ISSH features are analyzed. Before testing, the testers

must confirm that the ISSH specifications contain the creator’s claim of ISSH conformity to

3

requirements R , that is (,) 1R iF r  for ir R  . On the basis of data obtained in

specifications analysis and ISSH test runs, and the requirements, a set of test processes

{ }iT t is generated, where (,)i it M r  . { }iT t test processes are used for testing of

the system. For each test process it , the results to be registered are obtained. At the analysis

stage a set of ordered couples  , (,)i C it F t of actual and model results, is obtained. For

ISSH  , the conformity to requirements 1 2{ , ,... ,..., }i nR r r r r is declared is:

 
1

(,) (, (,))
n

R i C i
i

F r F M r n


     ,

that is, the test has proved the conformity of actual ISSH capabilities to the ones either

claimed by the specifications or required by regulations.

2. Methods of Testing of Information Security Tools Conformity to Information

Security Requirements

The basic document containing ISSH requirements is the regulatory document on

computational technology products by the Russian State Technical Committee1 [1]. By this

document, 7 protection classes are established and requirements are formulated to

discretionary and mandatory access controls, memory wiping, module isolation, document

marking, protection of input and output to an alienated material carrier, user-device matching,

identification and authentication, events logging, integrity control, etc. Let us discuss the

formalized test procedures of the most resource-hungry requirements of the above RIST =

{r1,r2,r3,r4,r5,r6} taken from this document.

2.1. Particular Methods for Discretionary Access Isolation Testing

The purpose is to test whether the ISSH functional opportunities meet the

requirements for discretionary access isolation, and if yes, to what extent.

Let us introduce definitions to be used for description of the test process. Let us grant

that },...,,...,,{ 21 ni SSSSS  is a set of test access subjects, },...,,...,,{ 21 mj OOOOO  is a set of

test access objects, and },...,,...,,{ 21 lk RRRRR  is a set of possible access rights (e.g., view,

saving, deletion, etc.). Let us define the access matrix as)(ijmM  , Rmij  , where ijm is a set

of access rights of the test subject iS to the test object jO . The matrix row corresponds to the

subject iS , and the column to the object jO . The element at the crossing of the row and

1 www.fstec.ru

4

column contains the set of access rights Rmij  of the corresponding subject to the

corresponding object.

The operator of the possession by the subject of the right to access to the object in the

matrix will be : , , , {0,1}:M i j kF M S O R 






no. if 0,

,object toright access thehas subject if ,1
,

jki

kjiM
ORS

),R,OS(MF

The operator of the actual possession by the subject of the right to access to the object

will be : , , {0,1}:fact i j kF S O R 






no. if 0,

,object toright access thehas subject if ,1 jki

kjifact

ORS
),R,O(SF

The sequence of the performed operations may be as follows:

1. Creation of test subjects 1 2{ , ,..., ,..., }i nS S S S S and objects of access

1 2{ , ,..., ,..., }j mO O O O O . Testing will be performed for all possible subjects and objects of

access, and the list of subjects and objects will be defined on the basis of the ISSH

specifications analysis.

2. Adjustment of the access rights for subjects of the ISSH under test to the test

objects under protection. This operation presupposes the adjustment of the access matrix

()ijM m , ijm R . In the testing, all possible subject-to-object access rights and their

combinations are checked.

3. Testing of ISSH configurations: the check of the actual possession of the right kr

by the subject jS with relation to the object iO ; thus, all values of the operator),R,O(SF kjifact

are checked for any kji ,, . The check is performed with the test access attempts, such as

viewing, saving, or deletion of objects by subjects.

4. Comparing the actual access rights with those defined by the access matrix.

The results of the test to be registered are:

1. The set of test access subjects },...,,...,,{ 21 ni SSSSS  , the set of test access objects
},...,,...,,{ 21 mj OOOOO  , and the set of possible access rights },...,,...,,{ 21 lk RRRRR  .

2. The results of adjustment of access isolation rules, that is, access matrix)(ijmM  ,
Rmij  .

3. Results of the check of the actual possession of the right kR by the subject jS

with relation to object iO , that is, values of the operator),R,O(SF kjifact for all kji ,, .

5

Let us define the criterion of positive decision: as a result of comparison of actual and

required access rights defined by the access matrix, they must coincide:

i,j,k),R,O(SF),R,OS(MF kjifactkjiM for , 

The check of the set access rights is performed through attempts of open and close

access by the subjects to objects with registration of results of these attempts as successful or

not.

The analysis of the obtained data is performed through comparison of the access

attempts results with the expected results defined in the test access matrix.

Similar to discretionary access isolation testing, the user-device matching testing is

performed, but in this case different input and output devices are considered access objects.

2.2. A Particular Method of Mandatory Access Control Testing

Let us introduce definitions to be used for description of the test process. Let us grant

that },...,,...,,{ 21 ni SSSSS  is a set of test access subjects, },...,,...,,{ 21 mj OOOOO  is a set of

test access objects, },...,,...,,{ 21 lk mmmmM  is a set of classification labels (classification

levels) of access subjects and objects (classification labels has an hierarchy:

llkkk mmmmmmm   11121 ,...,,...,), Oim is a classification label of the ith access object

and Sjm is classification label of the jth access subject.

Let us introduce the operators }1,0{,: jiREAD OSF of checking the right to reading and
}1,0{,: jiWRITE OSF of checking the right to writing possessed by subject iS with relation to

object jO :






no. if 0,

,object viewing toaccess thehas subject if ,1
),(

jj
jjREAD

OS
OSF






no. if 0,

,object editing toaccess thehas subject if ,1
),(

jj
jjWRITE

OS
OSF

The sequence of the performed operations may be as follows:

1. Creating test access subjects 1 2{ , ,..., ,..., }i nS S S S S and objects

1 2{ , ,..., ,..., }j mO O O O O .

2. Assigning classification labels 1 2{ , ,..., ,..., }k lM m m m m to the access subjects

(by transformation MSFS : which permits to calculate the classification level of any access

subject, i. e. SiiS mSF )().

6

3. Assigning classification labels 1 2{ , ,..., ,..., }k lM m m m m to the access objects (by

transformation MOFO : which permits to calculate the classification level of any access

object OjjO mOF )().

4. Performing the following test object access attempts by the subjects:

 reading data of the access objects by the access subjects, i. e. calculation of

: , {0,1}READ i jF S O  for ,i j ;

 writing data to the access objects by the access subjects, i. e. calculation of

: , {0,1}WRITE i jF S O  for ,i j .

5. Checking if the obtained results conform to the rules of the ticket-oriented access

isolation.

The results of the test to be registered are:

1. The set of test access subjects },...,,...,,{ 21 ni SSSSS  , the set of test access

objects },...,,...,,{ 21 mj OOOOO  , the set of classification labels (classification levels) of

access subjects and objects },...,,...,,{ 21 lk mmmmM  .

2. The results of adjustment of access isolation rules, that is, transformations
MSFS : , MOFO : (classification labels of access subjects and objects).

3. Results of the check of the actual possession of the right to writing and reading by

the subject jS with relation to the object iO , that is, values of operators : , {0,1}READ i jF S O 

and : , {0,1}WRITE i jF S O  for ji, .

As a result of the check of the ticket-oriented access isolation rules, the following data

are obtained:

 the access subject jS of the classification level Sjm may read data of the access

object iO of the classification level Oim if and only if the classification level of the access

subject jS is either higher or equal to the classification level of the access object iO , i. e. for

,i j , 1READ i jF (S ,O)  , if and only if Sj Oim m ;

 the access subject jS of the classification level Sjm may write data to the access

object iO of the classification level Oim if and only if the classification level of the access

object iO is either higher or equal to the classification level of the access subject jS , i. e. for

ji, , 1),O(SF jiWRITE if and only if SjOi mm  .

7

In a similar way, the test of the protection of input and output to an alienated material

carrier is performed.

2.3. A Particular Method of Memory Cleaning Testing

Let us introduce definitions to be used for description of the test process. Let us grant

that },...,,...,,{ 21 li aaaaA  is a set of memory areas under test (short term memory, hard drive

partitions, external carriers, etc.), and S is a test sequence of symbols unique for each area A

of the memory. For the description of the testing process, we will use the operator of presence

of the test sequence in the memory :}1,0{,: SaF icheck






no. if 0,

, areain present is sequence if ,1
),(

j
jcheck

aS
SaF

The sequence of operations is as follows:

1. Adjustment of memory cleaning applications.

2. Placing the test data into the memory (a unique sequence of text symbols S).

3. Locating the test data within the memory (address, disc partition, etc.).

4. Memory relocation (release) with the use of the standard bench means.

5. Control of the test data being present in or absent from the memory (a repeat

search and addressing using addresses defined at the initial stage); defining the value of

,S)(aF icheck .

6. Results analysis.

7. Applying assessment criteria.

The tests results to be registered are as follows:

1. Results of memory cleaning applications adjustment.

2. Results of the check for the test data being present in the memory after relocation

(release).

The criterion of positive decision is as follows: the sequence S of symbols loaded into

the memory must not be found again after relocation (release), i. e. iicheck a,S)(aF  ,0 .

2.4. A Particular Method of Module Isolation Testing

The isolation of modules follows from the fact that each process run by a user has its

individual addressing space isolated from any other process run by other users.

The sequence of operations is as follows:

1. Running applications or processes on behalf of different users.

2. Access attempts to the process memory run by a user on behalf of the user.

8

3. Access attempts to the process memory run by a user on behalf of the other users.

4. Access attempts to the PC real memory.

5. Results analysis.

6. Applying assessment criteria.

The test results to be registered are facts of access attempts to the processes' memory

run by other users and access attempts to the PC real memory.

The criterion of the positive decision is as follows: within the test, no access to the

processes' memory run by other users or to the PC real memory occurred.

2.5. A Particular Method of Access Subject Identification and Authentication

Testing

Let us introduce definitions to be used for description of the test process. Granting that
A is the alphabet of passwords and IDs of ISSH users, the user will be designated as

*AIDid  , and the password as *APWDpwd  ; the user's account USRusri  will be

characterized by the sequence),(kji pwdidusr  . Let us introduce the operator of correctness of

authentication data :}1,0{: USRFAUT






.no if , 0

,granted IST toaccess ,1
)(usrFAUT

The following sequence of operations may be used for testing identification and

authentication tools correctness:

1. Addressing the ISSH identification and authentication means and creating a set of

access subject's accounts ,...},{ 21 usrusrUSR  .

2. Running queries for identification and authentication with the use of different

combinations of authentication data: registered or unregistered IDs, or true or false passwords
),(kji pwdidtry  .

3. Obtained data analysis.

The test results to be registered are:

1. ISSH configurations: the set of access subjects' accounts USR .

2. Data obtained in test queries for identification and authentication: the set
),...}(),({ 21 tryFtryF AUTAUT .

The positive decision criteria are:

1. On entry of the registered ID and password, the user is granted an access to the

protected data: () 1AUT i iF try try ADM   .

9

2. On entry of an unregistered ID and/or wrong password, the user is not granted an

access to the protected data: ADMtrytryF iiAUT  0)(.

The check of the reliability of the user identification and authentication processes'

connection with all operations performed by the user is done within the tests of discretionary

and ticket-based access control. After each check, the logs of events are analysed.

The check is considered a success if the audit log contains records about all access

attempts and all operations performed by all users (security administrators included) that

occurred within the tests described in the above paragraphs. In addition, each logging-in entry

must specify the user ID employed in the access attempt and/or under which the user was

logged on and performed different operations in the system.

2.6. A Particular Method of Integrity Control Testing

Granting that },...,,{ 21 nfilefilefileFILE  is a set of ISSH files (configuration files or

software module), let us introduce operators of the integrity violation MODF and ISSH file

integrity control INTF .

The operator of integrity violation :}1,0{: FILEFMOD






.no if 0,

,in testing violatedintegrity file ,1
)(fileFMOD

The operator of ISSH file integrity control :}1,0{: FILEFINT






.no if , 0

,violatedintegrity file ,1
)(fileFINT

Let us designate the set of ISSH files modified within the test as

},...,,{ 21
  nfilefilefileFILE , granting that the file ifile is transformed into 

ifile . When ISSH

integrity control is tested, the following sequence of operations may be performed:

1. Configuration of integrity control applications (reaction to integrity violation,

integrity control method, check-out period, test conditions, etc.), and identification of the

ISSH file set ,...},{ 21 filefileFILE  .

2. Introducing changed into ISSH files (configuration changes, substitution or

modification of the executable files, etc.), the result being the set of modified files

,...},{ 21
  filefileFILE .

3. ISSH file integrity check initialization (creation of conditions under which the

ISSH performs integrity control).

4. Analysis of the ISSH reaction to its software or data integrity violation.

10

The test results to be registered are:

1. ISSH file set ,...},{ 21 filefileFILE  .

2. Modified ISSH file set ,...},{ 21
  filefileFILE .

3. ISSH reaction to integrity violation:),...(),(21
 fileFfileF INTINT

The criterion of positive decision is: the ISSH reveals all facts of integrity violation:

)()(iMODiINT fileFfileF  for],1[ni .

3. Recommendations for Testing Processes Optimization

Our experience of conducting different ISTs tests by our accredited test laboratory

shows that the main issue is the growth of time and material expenditures on standard

operations while the newly developed ISSH complexity grows along with the number of

platforms and environments where these ISTs can operate. For example, for a discretionary

access isolation testing, one will need to perform S O R  standard operations.

In general, it can be shown that the time  needed for a test grows exponentially:

, where n is the number of requirements under test, w is the number of test units

(for example, a user account), and v is the number of possible values that the factor under test

may have.

The problem of ISSH testing optimization may be formulated as follows. Granting

that is the time needed for experts to test the ISSH  with the use of the

testing process it and the transformation reflects the expenditures of the

ISSH  testing against requirements R . The optimization (minimization of time within a

certain expenditures limit) will be as follows:

 

 

, min,

, ,

i
i

i M
i

t

C r C

  



 






where MC is the limit set to expenditures.

As methods permitting to optimize testing, the following ways may be suggested.

1. Combining different test types. When an ISSH is tested, we recommend performing

certain tests simultaneously. For example, the events logging subsystem testing can be

combined with access isolation control and identification/authentication testing.

11

2. Testing with combinatorial overlapping methods. Testing all possible combinations

of input effects to check the software behaviour in full, is very labour-consuming. The

combinatorial overlapping testing is an approach that not only decreases the costs and

increases the efficiency of tests, but also reduces the probability of error in the software. The

idea is generally as follows: a failure of software is in the majority of cases is not caused by

an isolated incorrect input parameter but by a combination of two or more input parameters

(from two to six parameters, as follows from empirical data). The combinatorial overlapping

may be practicable for both configuration and input parameters testing.

3. Using software testing tools. To reduce time expenditures, software should be used

that permits to automate testing. Both ready-made software products presented in the software

market of today and script-based home-made programmes may be used [2,3].

Conclusion

The formalization of the ISSH security subsystems testing methods and processes

presented in this paper will make automation of ISSH and secured products conformity

assessment easier.

The main problem that companies encounter when testing the products is the increase

in time and cost expenditures caused by a large number of similar-type tests of the object's

functions to be performed on all possible input data domains. The suggested methods will

permit to reduce expenditures on conformity assessment and solve the problem of assessment

time minimization within a certain expenditure limit.

The conceptual approach to the conformity assessment formalization may be

recommended to anyone performing all types of tests of hardware, software, and secured

systems [4-10].

References

1. Legal and Technological Bases of Information Security of Automated and Single-

user Computational Systems / Kotenko I. V., Kotukhov M. M., Markov A. S., et al. St.

Petersburg: VUS, 2000. 190 p.

2. Barabanov A. A. Information Security Testing Tools // Information Security. Inside

Publishers. 2011. No. 1. p. 2-4. – in Russian

3. Markov A. S., Mironov S. V., Tsirlov V. L. Experience of Network Insecurity

Scanners Testing // Informational Fighting Against Terrorist Threat, 2005. No. 5. p. 109-122.

12

4. Barabanov A. V., Markov A. S., Fadin A. A. Software Certifying without Source

Texts // Open Source Systems. SUBD. 2011. No. 4. p. 38-41. URL: http://www.npo-

echelon.com/doc/software_certification.pdf
5. Markov A. S., Mironov S. V., Tsirlov V. L. Revealing Insecurities in Source Code.

// Open Source Systems. SUBD, 2005. No. 12. p. 64-69. URL:

http://www.osp.ru/os/2005/12/380655/

6. Markov A. S., Maslov V. G., Tsirlov V. L., Oleksenko I. A. Software Testing

Against Security Requirements // Engineering Physics Institute Proceedings. 2009. No. 2 (12)

p. 2-6.

7. A Time-saving Approach in Testing for Software Development / D. Yu. Burlak, A.

V. Sedakov, A. N. Sudarenko, P. S. Sokolov // Engineering Physics Institute Proceedings.

2010. No. 2 (16) p. 32-39.

8. Gourlay J. S. A Mathematical Framework for the Investigation of Testing // IEEE

Transactions on Software Engineering. 1983, Vol. SE-9, №. 6. P. 686-709.

9. Kuhn R., Kacker R., Lei Y. Practical Combinatorial Testing // NIST Special

Publication 800-142. Washington: U.S. Government Printing Office, 2010. 75 p.

10. Tian J. Software Quality Engineering: Testing, Quality Assurance, and

Quantifiable Improvement. Wiley, 2005. 440 p.

